Package: randomGLM 1.10-1
randomGLM: Random General Linear Model Prediction
A bagging predictor based on generalized linear models (GLMs) is implemented. The method is published in Song, Langfelder and Horvath (2013) <doi:10.1186/1471-2105-14-5>.
Authors:
randomGLM_1.10-1.tar.gz
randomGLM_1.10-1.zip(r-4.5)randomGLM_1.10-1.zip(r-4.4)randomGLM_1.10-1.zip(r-4.3)
randomGLM_1.10-1.tgz(r-4.4-any)randomGLM_1.10-1.tgz(r-4.3-any)
randomGLM_1.10-1.tar.gz(r-4.5-noble)randomGLM_1.10-1.tar.gz(r-4.4-noble)
randomGLM_1.10-1.tgz(r-4.4-emscripten)randomGLM_1.10-1.tgz(r-4.3-emscripten)
randomGLM.pdf |randomGLM.html✨
randomGLM/json (API)
# Install 'randomGLM' in R: |
install.packages('randomGLM', repos = c('https://plangfelder.r-universe.dev', 'https://cloud.r-project.org')) |
- brainCancer - The brain cancer data set
- mini - An example data set derived from the brain cancer data set
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:c7538391e3. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | OK | Oct 27 2024 |
R-4.5-linux | OK | Oct 27 2024 |
R-4.4-win | OK | Oct 27 2024 |
R-4.4-mac | OK | Oct 27 2024 |
R-4.3-win | OK | Oct 27 2024 |
R-4.3-mac | OK | Oct 27 2024 |
Exports:accuracyMeasurespredict.randomGLMrandomGLMthinRandomGLM
Dependencies:abindbackportsbase64encbslibcachemcheckmatecliclustercodetoolscolorspacedata.tabledigestdoParallelevaluatefansifarverfastmapfontawesomeforeachforeignFormulafsgeometryggplot2gluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobanditeratorsjquerylibjsonliteknitrlabelinglatticelifecyclelinproglpSolvemagicmagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellnlmennetpillarpkgconfigR6rappdirsRColorBrewerRcppRcppProgressrlangrmarkdownrpartrstudioapisassscalesstringistringrsurvivaltibbletinytexutf8vctrsviridisviridisLitewithrxfunyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Accuracy measures for a 2x2 confusion matrix or for vectors of predicted and observed values. | accuracyMeasures |
The brain cancer data set | brainCancer |
An example data set derived from the brain cancer data set | mini |
Prediction from a random generalized linear model predictor | predict.randomGLM |
Random generalized linear model predictor | randomGLM |
Random generalized linear model predictor thinning | thinRandomGLM |