Package: WGCNA 1.73

WGCNA: Weighted Correlation Network Analysis

Functions necessary to perform Weighted Correlation Network Analysis on high-dimensional data as originally described in Horvath and Zhang (2005) <doi:10.2202/1544-6115.1128> and Langfelder and Horvath (2008) <doi:10.1186/1471-2105-9-559>. Includes functions for rudimentary data cleaning, construction of correlation networks, module identification, summarization, and relating of variables and modules to sample traits. Also includes a number of utility functions for data manipulation and visualization.

Authors:Peter Langfelder [aut, cre], Steve Horvath [aut], Chaochao Cai [aut], Jun Dong [aut], Jeremy Miller [aut], Lin Song [aut], Andy Yip [aut], Bin Zhang [aut]

WGCNA_1.73.tar.gz
WGCNA_1.73.zip(r-4.5)WGCNA_1.73.zip(r-4.4)WGCNA_1.73.zip(r-4.3)
WGCNA_1.73.tgz(r-4.4-x86_64)WGCNA_1.73.tgz(r-4.4-arm64)WGCNA_1.73.tgz(r-4.3-x86_64)WGCNA_1.73.tgz(r-4.3-arm64)
WGCNA_1.73.tar.gz(r-4.5-noble)WGCNA_1.73.tar.gz(r-4.4-noble)
WGCNA_1.73.tgz(r-4.4-emscripten)WGCNA_1.73.tgz(r-4.3-emscripten)
WGCNA.pdf |WGCNA.html
WGCNA/json (API)

# Install 'WGCNA' in R:
install.packages('WGCNA', repos = c('https://plangfelder.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • BloodLists - Blood Cell Types with Corresponding Gene Markers
  • BrainLists - Brain-Related Categories with Corresponding Gene Markers
  • BrainRegionMarkers - Gene Markers for Regions of the Human Brain
  • ImmunePathwayLists - Immune Pathways with Corresponding Gene Markers
  • PWLists - Pathways with Corresponding Gene Markers - Compiled by Mike Palazzolo and Jim Wang from CHDI
  • SCsLists - Stem Cell-Related Genes with Corresponding Gene Markers

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

9.87 score 49 stars 33 packages 4.8k scripts 16k downloads 3.5k mentions 274 exports 104 dependencies

Last updated 2 months agofrom:3593781b3d. Checks:OK: 8 ERROR: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-win-x86_64OKNov 05 2024
R-4.5-linux-x86_64ERRORNov 05 2024
R-4.4-win-x86_64OKNov 05 2024
R-4.4-mac-x86_64OKNov 05 2024
R-4.4-mac-aarch64OKNov 05 2024
R-4.3-win-x86_64OKNov 05 2024
R-4.3-mac-x86_64OKNov 05 2024
R-4.3-mac-aarch64OKNov 05 2024

Exports:accuracyMeasuresaddBlockToBlockwiseDataaddErrorBarsaddGridaddGuideLinesaddTraitToMEsadjacencyadjacency.fromSimilarityadjacency.polyRegadjacency.splineRegAFcorMIalignExprallocateJobsallowWGCNAThreadsautomaticNetworkScreeningautomaticNetworkScreeningGSBD.actualFileNamesBD.blockLengthsBD.checkAndDeleteFilesBD.getDataBD.getMetaDataBD.nBlocksbicorbicorAndPvaluebicovWeightFactorsbicovWeightsbicovWeightsFromFactorsbinarizeCategoricalColumnsbinarizeCategoricalColumns.forPlotsbinarizeCategoricalColumns.forRegressionbinarizeCategoricalColumns.pairwisebinarizeCategoricalVariableblockSizeblockwiseConsensusModulesblockwiseIndividualTOMsblockwiseModulesblueWhiteRedbranchEigengeneDissimbranchEigengeneSimilaritybranchSplitbranchSplit.dissimbranchSplitFromStabilityLabelsbranchSplitFromStabilityLabels.individualFractionbranchSplitFromStabilityLabels.predictioncheckAdjMatcheckSetscheckSimilaritychooseOneHubInEachModulechooseTopHubInEachModuleclusterCoefcoClusteringcoClustering.permutationTestcollapseRowscollapseRowsUsingKMEcollectGarbagecolQuantileCconformityBasedNetworkConceptsconformityDecompositionconsensusCalculationconsensusDissTOMandTreeconsensusKMEconsensusMEDissimilarityconsensusOrderMEsconsensusProjectiveKMeansconsensusRepresentativesconsensusTOMconsensusTreeInputsconvertNumericColumnsToNumericcorcor1corAndPvaluecorFastcorPredictionSuccesscorPvalueFishercorPvalueStudentcorrelationPreservationcoxRegressionResidualscutreeStaticcutreeStaticColordisableWGCNAThreadsdisplayColorsdynamicMergeCutempiricalBayesLMenableWGCNAThreadsexportNetworkToCytoscapeexportNetworkToVisANTfactorizeNonNumericColumnsfixDataStructureformatLabelsfundamentalNetworkConceptsGOenrichmentAnalysisgoodGenesgoodGenesMSgoodSamplesgoodSamplesGenesgoodSamplesGenesMSgoodSamplesMSgreenBlackRedgreenWhiteRedGTOMdisthierarchicalBranchEigengeneDissimhierarchicalConsensusCalculationhierarchicalConsensusKMEhierarchicalConsensusMEDissimilarityhierarchicalConsensusModuleshierarchicalConsensusTOMhierarchicalMergeCloseModuleshubGeneSignificanceimputeByModuleindividualTOMsinitProgIndintramodularConnectivityintramodularConnectivity.fromExprisMultiDatakeepCommonProbeskMEcomparisonScatterplotlabeledBarplotlabeledHeatmaplabeledHeatmap.multiPagelabelPointslabels2colorslist2multiDatalowerTri2matrixmatchLabelsmatrixToNetworkmergeBlockwiseDatamergeCloseModulesmetaAnalysismetaZfunctionminWhichMinmodifiedBisquareWeightsmoduleColor.getMEprefixmoduleEigengenesmoduleMergeUsingKMEmoduleNumbermodulePreservationmtd.applymtd.applyToSubsetmtd.branchEigengeneDissimmtd.colnamesmtd.mapplymtd.rbindSelfmtd.setAttrmtd.setColnamesmtd.simplifymtd.subsetmultiDatamultiData.eigengeneSignificancemultiData2listmultiGrepmultiGreplmultiGSubmultiIntersectmultiSetMEsmultiSubmultiUnionmutualInfoAdjacencynearestCentroidPredictornearestNeighborConnectivitynearestNeighborConnectivityMSnetworkConceptsnetworkScreeningnetworkScreeningGSnewBlockInformationnewBlockwiseDatanewConsensusOptionsnewConsensusTreenewCorrelationOptionsnewNetworkOptionsnormalizeLabelsnPresentnSetsnumbers2colorsorderBranchesUsingHubGenesorderMEsorderMEsByHierarchicalConsensusoverlapTableoverlapTableUsingKMEpickHardThresholdpickHardThreshold.fromSimilaritypickSoftThresholdpickSoftThreshold.fromSimilarityplotClusterTreeSamplesplotColorUnderTreeplotCorplotDendroAndColorsplotEigengeneNetworksplotMatplotMEpairsplotModuleSignificanceplotMultiHistplotNetworkHeatmapplotOrderedColorspmeanpmean.fromListpmedianpminWhich.fromListpopulationMeansInAdmixturepquantilepquantile.fromListprepCommaprependZerosprependZeros.intpreservationNetworkConnectivityprojectiveKMeansproportionsInAdmixturepropVarExplainedpruneAndMergeConsensusModulespruneConsensusModulesqvalueqvalue.restrictedrandIndexrankPvaluerecutBlockwiseTreesrecutConsensusTreesredWhiteGreenreflectBranchrelativeCorPredictionSuccessremoveGreyMEremovePrincipalComponentsreplaceMissingreturnGeneSetsAsListrgcolors.funcrowQuantileCsampledBlockwiseModulessampledHierarchicalConsensusModulesscaleFreeFitIndexscaleFreePlotselectBranchselectFewestConsensusMissingsetCorrelationPreservationshortenStringssigmoidAdjacencyFunctionsignedKMEsignifNumericsignumAdjacencyFunctionsimpleConsensusCalculationsimpleHierarchicalConsensusCalculationsimulateDatExprsimulateDatExpr5ModulessimulateEigengeneNetworksimulateModulesimulateMultiExprsimulateSmallLayersizeGrWindowsizeRestrictedClusterMergesoftConnectivitysoftConnectivity.fromSimilarityspastestandardColorsstandardScreeningBinaryTraitstandardScreeningCensoredTimestandardScreeningNumericTraitstdErrstratifiedBarplotsubsetTOMswapTwoBranchesTOMdistTOMplotTOMsimilarityTOMsimilarityFromExprtransposeBigDataTrueTraitunsignedAdjacencyupdateProgInduserListEnrichmentvectorizeMatrixvectorTOMverboseBarplotverboseBoxplotverboseIplotverboseScatterplotvotingLinearPredictorWGCNAnThreads

Dependencies:AnnotationDbiaskpassbackportsbase64encBiobaseBiocGenericsBiostringsbitbit64blobbslibcachemcheckmatecliclustercodetoolscolorspacecpp11crayoncurldata.tableDBIdigestdoParalleldynamicTreeCutevaluatefansifarverfastclusterfastmapfontawesomeforeachforeignFormulafsgenericsGenomeInfoDbGenomeInfoDbDataggplot2glueGO.dbgridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetshttrimputeIRangesisobanditeratorsjquerylibjsonliteKEGGRESTknitrlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmemoisemgcvmimemunsellnlmennetopensslpillarpkgconfigplogrpngpreprocessCoreR6rappdirsRColorBrewerRcpprlangrmarkdownrpartRSQLiterstudioapiS4VectorssassscalesstringistringrsurvivalsystibbletinytexUCSC.utilsutf8vctrsviridisviridisLitewithrxfunXVectoryamlzlibbioc

Readme and manuals

Help Manual

Help pageTopics
Accuracy measures for a 2x2 confusion matrix or for vectors of predicted and observed values.accuracyMeasures
Add error bars to a barplot.addErrorBars
Add grid lines to an existing plot.addGrid
Add vertical ``guide lines'' to a dendrogram plotaddGuideLines
Add trait information to multi-set module eigengene structureaddTraitToMEs
Calculate network adjacencyadjacency adjacency.fromSimilarity
Adjacency matrix based on polynomial regressionadjacency.polyReg
Calculate network adjacency based on natural cubic spline regressionadjacency.splineReg
Prediction of Weighted Mutual Information Adjacency Matrix by CorrelationAFcorMI
Align expression data with given vectoralignExpr
Divide tasks among workersallocateJobs
Allow and disable multi-threading for certain WGCNA calculationsallowWGCNAThreads disableWGCNAThreads enableWGCNAThreads WGCNAnThreads
One-step automatic network gene screeningautomaticNetworkScreening
One-step automatic network gene screening with external gene significanceautomaticNetworkScreeningGS
Various basic operations on 'BlockwiseData' objects.BD.actualFileNames BD.blockLengths BD.checkAndDeleteFiles BD.getData BD.getMetaData BD.nBlocks
Biweight Midcorrelationbicor
Calculation of biweight midcorrelations and associated p-valuesbicorAndPvalue
Weights used in biweight midcovariancebicovWeightFactors bicovWeights bicovWeightsFromFactors
Turn categorical columns into sets of binary indicatorsbinarizeCategoricalColumns binarizeCategoricalColumns.forPlots binarizeCategoricalColumns.forRegression binarizeCategoricalColumns.pairwise
Turn a categorical variable into a set of binary indicatorsbinarizeCategoricalVariable
Attempt to calculate an appropriate block size to maximize efficiency of block-wise calcualtions.blockSize
Find consensus modules across several datasets.blockwiseConsensusModules
Calculation of block-wise topological overlapsblockwiseIndividualTOMs
Automatic network construction and module detectionblockwiseModules
Blood Cell Types with Corresponding Gene MarkersBloodLists
Blue-white-red color sequenceblueWhiteRed
Brain-Related Categories with Corresponding Gene MarkersBrainLists
Gene Markers for Regions of the Human BrainBrainRegionMarkers
Branch dissimilarity based on eigennodes (eigengenes).branchEigengeneDissim branchEigengeneSimilarity hierarchicalBranchEigengeneDissim mtd.branchEigengeneDissim
Branch split.branchSplit
Branch split based on dissimilarity.branchSplit.dissim
Branch split (dissimilarity) statistics derived from labels determined from a stability studybranchSplitFromStabilityLabels branchSplitFromStabilityLabels.individualFraction branchSplitFromStabilityLabels.prediction
Check adjacency matrixcheckAdjMat checkSimilarity
Check structure and retrieve sizes of a group of datasets.checkSets
Chooses a single hub gene in each modulechooseOneHubInEachModule
Chooses the top hub gene in each modulechooseTopHubInEachModule
Clustering coefficient calculationclusterCoef
Co-clustering measure of cluster preservation between two clusteringscoClustering
Permutation test for co-clusteringcoClustering.permutationTest
Select one representative row per groupcollapseRows
Selects one representative row per group based on kMEcollapseRowsUsingKME
Iterative garbage collection.collectGarbage
Fast colunm- and row-wise quantile of a matrix.colQuantileC rowQuantileC
Calculation of conformity-based network concepts.conformityBasedNetworkConcepts
Conformity and module based decomposition of a network adjacency matrix.conformityDecomposition
Calculation of a (single) consenus with optional data calibration.consensusCalculation
Consensus clustering based on topological overlap and hierarchical clusteringconsensusDissTOMandTree
Calculate consensus kME (eigengene-based connectivities) across multiple data sets.consensusKME
Consensus dissimilarity of module eigengenes.consensusMEDissimilarity
Put close eigenvectors next to each other in several sets.consensusOrderMEs
Consensus projective K-means (pre-)clustering of expression dataconsensusProjectiveKMeans
Consensus selection of group representativesconsensusRepresentatives
Consensus network (topological overlap).consensusTOM
Get all elementary inputs in a consensus treeconsensusTreeInputs
Convert character columns that represent numbers to numericconvertNumericColumnsToNumeric
Fast calculations of Pearson correlation.cor cor1 corFast
Calculation of correlations and associated p-valuescorAndPvalue
Qunatification of success of gene screeningcorPredictionSuccess
Fisher's asymptotic p-value for correlationcorPvalueFisher
Student asymptotic p-value for correlationcorPvalueStudent
Preservation of eigengene correlationscorrelationPreservation
Deviance- and martingale residuals from a Cox regression modelcoxRegressionResiduals
Constant-height tree cutcutreeStatic
Constant height tree cut using color labelscutreeStaticColor
Show colors used to label modulesdisplayColors
Threshold for module mergingdynamicMergeCut
Empirical Bayes-moderated adjustment for unwanted covariatesempiricalBayesLM
Export network to CytoscapeexportNetworkToCytoscape
Export network data in format readable by VisANTexportNetworkToVisANT
Turn non-numeric columns into factorsfactorizeNonNumericColumns
Put single-set data into a form useful for multiset calculations.fixDataStructure
Break long character strings into multiple linesformatLabels
Calculation of fundamental network concepts from an adjacency matrix.fundamentalNetworkConcepts
Calculation of GO enrichment (experimental)GOenrichmentAnalysis
Filter genes with too many missing entriesgoodGenes
Filter genes with too many missing entries across multiple setsgoodGenesMS
Filter samples with too many missing entriesgoodSamples
Iterative filtering of samples and genes with too many missing entriesgoodSamplesGenes
Iterative filtering of samples and genes with too many missing entries across multiple data setsgoodSamplesGenesMS
Filter samples with too many missing entries across multiple data setsgoodSamplesMS
Green-black-red color sequencegreenBlackRed
Green-white-red color sequencegreenWhiteRed
Generalized Topological Overlap MeasureGTOMdist
Hierarchical consensus calculationhierarchicalConsensusCalculation
Calculation of measures of fuzzy module membership (KME) in hierarchical consensus moduleshierarchicalConsensusKME
Hierarchical consensus calculation of module eigengene dissimilarityhierarchicalConsensusMEDissimilarity
Hierarchical consensus network construction and module identificationhierarchicalConsensusModules
Calculation of hierarchical consensus topological overlap matrixhierarchicalConsensusTOM
Merge close (similar) hierarchical consensus moduleshierarchicalMergeCloseModules
Hubgene significancehubGeneSignificance
Immune Pathways with Corresponding Gene MarkersImmunePathwayLists
Impute missing data separately in each moduleimputeByModule
Calculate individual correlation network matricesindividualTOMs
Inline display of progressinitProgInd updateProgInd
Calculation of intramodular connectivityintramodularConnectivity intramodularConnectivity.fromExpr
Determine whether the supplied object is a valid multiData structureisMultiData
Keep probes that are shared among given data setskeepCommonProbes
Function to plot kME values between two comparable data sets.kMEcomparisonScatterplot
Barplot with text or color labels.labeledBarplot
Produce a labeled heatmap plotlabeledHeatmap
Labeled heatmap divided into several separate plots.labeledHeatmap.multiPage
Label scatterplot pointslabelPoints
Convert numerical labels to colors.labels2colors
Convert a list to a multiData structure and vice-versa.list2multiData multiData2list
Reconstruct a symmetric matrix from a distance (lower-triangular) representationlowerTri2matrix
Relabel module labels to best match the given reference labelsmatchLabels
Construct a network from a matrixmatrixToNetwork
Merge close modules in gene expression datamergeCloseModules
Meta-analysis of binary and continuous variablesmetaAnalysis
Meta-analysis Z statisticmetaZfunction
Fast joint calculation of row- or column-wise minima and indices of minimum elementsminWhichMin
Modified Bisquare WeightsmodifiedBisquareWeights
Get the prefix used to label module eigengenes.moduleColor.getMEprefix
Calculate module eigengenes.moduleEigengenes
Merge modules and reassign genes using kME.moduleMergeUsingKME
Fixed-height cut of a dendrogram.moduleNumber
Calculation of module preservation statisticsmodulePreservation
Apply a function to each set in a multiData structure.mtd.apply mtd.applyToSubset
Apply a function to elements of given multiData structures.mtd.mapply
Turn a multiData structure into a single matrix or data frame.mtd.rbindSelf
Set attributes on each component of a multiData structuremtd.setAttr
Get and set column names in a multiData structure.mtd.colnames mtd.setColnames
If possible, simplify a multiData structure to a 3-dimensional array.mtd.simplify
Subset rows and columns in a multiData structuremtd.subset
Create a multiData structure.multiData
Eigengene significance across multiple setsmultiData.eigengeneSignificance
Analogs of grep(l) and (g)sub for multiple patterns and relacementsmultiGrep multiGrepl multiGSub multiSub
Calculate module eigengenes.multiSetMEs
Union and intersection of multiple setsmultiIntersect multiUnion
Calculate weighted adjacency matrices based on mutual informationmutualInfoAdjacency
Nearest centroid predictornearestCentroidPredictor
Connectivity to a constant number of nearest neighborsnearestNeighborConnectivity
Connectivity to a constant number of nearest neighbors across multiple data setsnearestNeighborConnectivityMS
Calculations of network conceptsnetworkConcepts
Identification of genes related to a traitnetworkScreening
Network gene screening with an external gene significance measurenetworkScreeningGS
Create a list holding information about dividing data into blocksBlockInformation newBlockInformation
Create, merge and expand BlockwiseData objectsaddBlockToBlockwiseData BlockwiseData mergeBlockwiseData newBlockwiseData
Create a list holding consensus calculation options.ConsensusOptions newConsensusOptions
Create a new consensus treeConsensusTree newConsensusTree
Creates a list of correlation options.CorrelationOptions newCorrelationOptions
Create a list of network construction arguments (options).NetworkOptions newNetworkOptions
Transform numerical labels into normal order.normalizeLabels
Number of present data entries.nPresent
Number of sets in a multi-set variablenSets
Color representation for a numeric variablenumbers2colors
Optimize dendrogram using branch swaps and reflections.orderBranchesUsingHubGenes
Put close eigenvectors next to each otherorderMEs
Order module eigengenes by their hierarchical consensus similarityorderMEsByHierarchicalConsensus
Calculate overlap of modulesoverlapTable
Determines significant overlap between modules in two networks based on kME tables.overlapTableUsingKME
Analysis of scale free topology for hard-thresholding.pickHardThreshold pickHardThreshold.fromSimilarity
Analysis of scale free topology for soft-thresholdingpickSoftThreshold pickSoftThreshold.fromSimilarity
Annotated clustering dendrogram of microarray samplesplotClusterTreeSamples
Plot color rows in a given order, for example under a dendrogramplotColorUnderTree plotOrderedColors
Red and Green Color Image of Correlation MatrixplotCor
Dendrogram plot with color annotation of objectsplotDendroAndColors
Eigengene network plotplotEigengeneNetworks
Red and Green Color Image of Data MatrixplotMat
Pairwise scatterplots of eigengenesplotMEpairs
Barplot of module significanceplotModuleSignificance
Plot multiple histograms in a single plotplotMultiHist
Network heatmap plotplotNetworkHeatmap
Estimate the population-specific mean values in an admixed population.populationMeansInAdmixture
Parallel quantile, median, meanpmean pmean.fromList pmedian pminWhich.fromList pquantile pquantile.fromList
Prepend a comma to a non-empty stringprepComma
Pad numbers with leading zeros to specified total widthprependZeros prependZeros.int
Network preservation calculationspreservationNetworkConnectivity
Projective K-means (pre-)clustering of expression dataprojectiveKMeans
Estimate the proportion of pure populations in an admixed population based on marker expression values.proportionsInAdmixture
Proportion of variance explained by eigengenes.propVarExplained
Iterative pruning and merging of (hierarchical) consensus modulespruneAndMergeConsensusModules
Prune (hierarchical) consensus modules by removing genes with low eigengene-based intramodular connectivitypruneConsensusModules
Pathways with Corresponding Gene Markers - Compiled by Mike Palazzolo and Jim Wang from CHDIPWLists
Estimate the q-values for a given set of p-valuesqvalue
qvalue convenience wrapperqvalue.restricted
Rand index of two partitionsrandIndex
Estimate the p-value for ranking consistently high (or low) on multiple listsrankPvalue
Repeat blockwise module detection from pre-calculated datarecutBlockwiseTrees
Repeat blockwise consensus module detection from pre-calculated datarecutConsensusTrees
Red-white-green color sequenceredWhiteGreen
Compare prediction successrelativeCorPredictionSuccess
Removes the grey eigengene from a given collection of eigengenes.removeGreyME
Remove leading principal components from dataremovePrincipalComponents
Replace missing values with a constant.replaceMissing
Return pre-defined gene lists in several biomedical categories.returnGeneSetsAsList
Red and Green Color Specificationrgcolors.func
Blockwise module identification in sampled datasampledBlockwiseModules
Hierarchical consensus module identification in sampled datasampledHierarchicalConsensusModules
Calculation of fitting statistics for evaluating scale free topology fit.scaleFreeFitIndex
Visual check of scale-free topologyscaleFreePlot
Stem Cell-Related Genes with Corresponding Gene MarkersSCsLists
Select columns with the lowest consensus number of missing dataselectFewestConsensusMissing
Summary correlation preservation measuresetCorrelationPreservation
Shorten given character strings by truncating at a suitable separator.shortenStrings
Sigmoid-type adacency function.sigmoidAdjacencyFunction
Signed eigengene-based connectivitysignedKME
Round numeric columns to given significant digits.signifNumeric
Hard-thresholding adjacency functionsignumAdjacencyFunction
Simple calculation of a single consenussimpleConsensusCalculation
Simple hierarchical consensus calculationsimpleHierarchicalConsensusCalculation
Simulation of expression datasimulateDatExpr
Simplified simulation of expression datasimulateDatExpr5Modules
Simulate eigengene network from a causal modelsimulateEigengeneNetwork
Simulate a gene co-expression modulesimulateModule
Simulate multi-set expression datasimulateMultiExpr
Simulate small modulessimulateSmallLayer
Opens a graphics window with specified dimensionssizeGrWindow
Cluter merging with size restrictionssizeRestrictedClusterMerge
Calculates connectivity of a weighted network.softConnectivity softConnectivity.fromSimilarity
Space-less pastespaste
Colors this library uses for labeling modules.standardColors
Standard screening for binatry traitsstandardScreeningBinaryTrait
Standard Screening with regard to a Censored Time VariablestandardScreeningCensoredTime
Standard screening for numeric traitsstandardScreeningNumericTrait
Standard error of the mean of a given vector.stdErr
Bar plots of data across two splitting parametersstratifiedBarplot
Topological overlap for a subset of a whole set of genessubsetTOM
Select, swap, or reflect branches in a dendrogram.reflectBranch selectBranch swapTwoBranches
Graphical representation of the Topological Overlap MatrixTOMplot
Topological overlap matrix similarity and dissimilarityTOMdist TOMsimilarity
Topological overlap matrixTOMsimilarityFromExpr
Transpose a big matrix or data frametransposeBigData
Estimate the true trait underlying a list of surrogate markers.TrueTrait
Calculation of unsigned adjacencyunsignedAdjacency
Measure enrichment between inputted and user-defined listsuserListEnrichment
Turn a matrix into a vector of non-redundant componentsvectorizeMatrix
Topological overlap for a subset of the whole set of genesvectorTOM
Barplot with error bars, annotated by Kruskal-Wallis or ANOVA p-valueverboseBarplot
Boxplot annotated by a Kruskal-Wallis p-valueverboseBoxplot
Scatterplot with densityverboseIplot
Scatterplot annotated by regression line and p-valueverboseScatterplot
Voting linear predictorvotingLinearPredictor